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Abstract 
The photosynthetic efficiency of Cornus controversa leaves was decreased significantly under Cd 

treatment while it was not affected by Pb exposure. Cd decreased while Pb treatment increased the 
chlorophyll contents of Cornus controversa leaves. Furthermore, the peroxidase (GPX) activities were 
decreased after Cd treatment while elevated by Pb exposure in Cornus controvera seedlings. In addition, both 
Cd and Pb exposures increased the malondialdehyde (MDA) and proline contents and elevated the 
superoxide dismutase (SOD) activities of Cornus controvera seedlings. Collectively, these results indicated 
that Cornus controversa may be more tolerant to Pb than Cd toxicity. This finding will contribute to the 
evaluation of planting Cornus controversa in heavy metal polluted soil conditions. 
 
Introduction 

Environmental heavy metal contamination is becoming a worldwide problem that has attracted 
a great deal of attention. The release of heavy metals into the environment is mainly caused by 
various anthropogenic activities associated with agricultural practices, mineral exploration, 
industrial processes and solid waste management (Alumaa et al. 2002). Heavy metal pollution 
causes serious physiological damage to the plants. Exposure to high levels of heavy metals 
induces inhibition of nutrient uptake, hindering the activity of photosynthetic apparatus, inhibiting 
the activation of antioxidant enzymes (Sandalio et al. 2001), and displacing the essential elements 
in plants. Heavy metals also damage the plant cellular components, such as membranes, nucleic 
acids, chloroplast pigments, and peroxidizing lipid. 

Among the heavy metal pollutants, cadmium (Cd) and lead (Pb) are considered as the most 
toxic element. The plants subjected to heavy metal contaminations display various morphological, 
physiological, and biochemical changes, and these changes are usually considered to be the 
indicators of the degree of heavy metal injury. Photosynthesis is one the most fundamental and 
intricate physiological processes in higher plants. The mechanism of photosynthesis involves 
various components, including photosynthetic pigments and photosystems, the electron transport 
system, and CO2 reduction pathways, any damage caused by a stress may reduce the overall 
photosynthetic capacity of a green plant (Ashraf and Harris 2013). Heavy metal pollutions such as 
Cd, copper (Cu), and chromium (Cr) can inhibit the photosynthetic performance of plants by 
affecting the fluorescence emission kinetic characteristics and photosynthetic pigments of plants 
(Huseynova  et  al.  2009, Nagajyoti  et  al.  2010).  Furthermore,  the  responses  of  plant  natural 
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antioxidant system is a another efficient indicator for heavy metal stresses, which involves a 
number of enzymes including superoxide dismutase (SOD), peroxidase (GPX), catalase (CAT),  
and ascorbate peroxidase (APX) (Clijsters et al. 1999). These antioxidant enzymes can protect 
plant cells from damage caused by superoxide radical reaction products and build a physical 
barrier against toxic heavy metals (Krantev et al. 2008). Collectively, the photosynthetic 
performance and anti-oxidative response are two sensitive indicators of plants in response to 
heavy metal stresses, which can reflect the ability of plants surviving on polluted areas. The 
photosynthesis performance and anti-oxidant activity of Cornus controversa plants under different 
concentrations of Cd and Pb treatment were studied.  
 
Materials and Methods 

Two-year-old healthy Cornus controversa seedlings of a uniform height (15 - 20 cm) were 
grown in the Southwest Forestry University with a climate condition similar to that of the original 
site of the Cornus controversa. The seedlings were transplanted to 5 litre plastic pots filled with 
red soil, perlite and humus soil in the proportion of 3 : 3 : 2. The experimental treatments started 
from 10 September to 10 October, 2012 after the seedlings were transplanted. The seedlings were 
randomly divided into five groups, each group including10 pots. One was the control and the 
others were treated with different levels of Cd (10 mmol/l and 20 mmol/l) and Pb (5 mmol/l and 
10 mmol/L). The Cd was applied as CdCl2, and the Pb was applied as Pb(NO3)2. For each Pb 
treatment, the pots were watered with 10 ml of Pb(NO3)2 solution every other day. It is the same as 
for Cd treatment. The control was watered 10 ml of water instead of heavy metals solution. The 
seedlings were collected at days 30, respectively. Various chlorophyll fluorescence, physiological, 
and biochemical parameters were measured at the end of the experiment. The third or fifth pair of 
leaves completely unfolded were selected as materials to measure the fluorescence parameters and 
physiological and biochemical indexes, and at least five seedlings of each repetition were chosen 
in each treatment. 
 Chlorophyll fluorescence parameters were performed using the Imaging-PAM M-series (Walz, 
Effeltrich, Germany) as described by Brugnoli and Björkman (1992). After full dark adaption, 
leaves were used to determine the Fo (the minimal fluorescence after the dark adaptation), the 
maximum efficiency of PSII and Fv/Fm. Non-photochemical quenching coefficients qN and 
photochemical quenching qP coefficients were calculated as described by van Kooten and Snel 
(1990). The concentrations of chlorophyll (a, b) were calculated using adjusted extinction 
coefficients (Inskeep and Bloom 1985). The malondialdehyde (MDA) content were measured as 
described by Hodges et al. (1999). The absorbance of the free proline concentration was measured 
at 520 nm. Free proline was measured as described by Bates et al. (1973). The proline content was 
expressed as µg per gram of fresh weight. The total superoxide dismutase (EC 1.15.1.1, SOD) 
activity was measured spectrophotometrically based on inhibition in the photochemical reduction 
of nitrobluetetrazolium (NBT) (Beauchamp et al. 1971). The guaiacol peroxidase (EC 1.11.1.7, 
GPX) activity of leaves was measured as described by Chance and Maehly (1955). Statistical 
analyses were performed with the statistical software package for social science (SPSS), version 
17.0. One-way analyze of variance (ANOVA) were conducted to evaluate the significance of the 
heavy metal effects. Among all treatments, the means were compared by Duncan’s tests at the 
significance level (p < 0.05). 
 

Results and Discussion 
 The Fv/Fm and Y(II) values of Cornus controversa leaves were obviously decreased upon 10 
and 20 mmol/l Cd exposure, suggesting that Cd treatment may depress the photosynthesis 
efficiency of the plants (Table 1). In contrast, the Fv/Fm and Y(II) values were not obvious altered 
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after Pb treatment (Table 1). Fv/Fm indicates the maximum photochemical efficiency of the 
photosystem II, and Y(II) illustrates the amount of energy used in photochemistry by photosystem 
II. Fv/Fm and Y(II) values are two important indictors reflecting the photosynthesis efficiency of 
plants. Chlorophyll content is considered as an indictor of damages to photosynthetic system 
induced by adverse environment (Maxwell and Johnson 2000). Cd treatments decreased both 
chlorophyll a and b contents of Cornus controversa. In contrast, chlorophyll a and b contents were 
increased upon Pb treatment with the increasing concentrations of Pb (Table 2). Collectively, Cd 
might be more toxic to the photosynthetic systems of Cornus controversa than Pb pollution. On 
the other hand, one of the most important causes of Cd toxicity is that it induces strong iron (Fe) 
deficiency. Fe is required for the biosynthesis of chlorophyll, and iron-deficient plants often 
showed decreased levels of chlorophyll. A number of studies have showed that acute Cd stress 
decreased the chlorophyll content and perturbed the composition of thylakoid complexes (Kapoor 
et al. 2014). These findings suggested that the decreased level of chlorophyll in Cornus 
controversa seedlings upon Cd may be caused by Cd induced Fe deficiency. Furthermore, Fe has 
an intermediate redox potential relative to other electron donors used in photosynthesis, and Fe is 
also necessary for the biosynthesis of iron-sulfur proteins in plants. Cd induced Fe deficiency may 
interfere with the electron transport of the photosystem and thus decrease the photosynthesis 
efficiency of Cornus controversa seedlings.   High  level  of  Pb  toxicity could inhibit chlorophyll 
 

Table 1.  Effects of lead and cadmium on chlorophyll fluorescence parameters. 
 

Treatment Fo Fv/Fm Y(II) qN qP 
CK 0.1077 ± 0.0141a 0.7295 ± 0.0094b 0.5238 ± 0.0115b 0.5437 ± 0.0881ab 0.8509 ± 0.0257ab 
Pb2+A 0.1001 ± 0.0022a 0.7158 ± 0.0065b 0.5533 ± 0.0314b 0.5363 ± 0.0345ab 0.9127 ± 0.0419b 
Pb2+B 0.0942 ± 0.0128a 0.7525 ± 0.0191b 0.5788 ± 0.0425b 0.4717 ± 0.0736a 0.8713 ± 0.0203ab 
Cd2+A 0.1441 ± 0.0120b 0.6672 ± 0.0252a 0.4114 ± 0.0653a 0.6490 ± 0.0723b 0.8004 ± 0.1202ab 
Cd2+B 0.1477 ± 0.0096b 0.6582 ± 0.0300a 0.3995 ± 0.0194a 0.6374 ± 0.0408b 0.7795 ± 0.0512a 
p 0.000*** 0.001** 0.000***   0.036*            0.145ns 

 

CK, control treatment; Pb2+A, treatment with 5 mmol/l Pb(NO3)2 solution; Pb2+B, treatment with 10 mmol/l 
Pb(NO3)2 solution; Cd2+A, treatment with 10 mmol/l CdCl2 solution; Cd2+B, treatment with 10 mmol/l CdCl2 
solution. Values followed by the same letter within a column indicate nonsignificant differences at p < 0.05 
(DMRT). Each value represents the mean ± SE of five replicates; the same as follow. 
 
Table 2.  Effects of lead and cadmium on chlorophyll content. 
 

Treatment Chl a (mg/g FW) Chl b (mg/g FW) Chl b/a 
CK 1.026 ± 0.048 ab 0.521 ± 0.079ab 0.5063 ± 0.0201a 
Pb2+A 1.291 ± 0.024 b 0.651 ± 0.035b 0.5041 ± 0.0177a 
Pb2+B 1.706 ± 0.299c 0.842 ± 0.122c 0.4956 ± 0.0180a 
Cd2+A 0.860 ± 0.031a 0.444 ± 0.028a 0.5155 ± 0.0226a 
Cd2+B 0.778 ± 0.050a 0.411 ± 0.017a 0.5286 ± 0.0120a 
p 0.000*** 0.000*** 0.257ns 

 

synthesis causing impaired uptake of essential elements and even accelerate the decomposition of 
chlorophyll (Cenkci et al. 2010), such as, 50 mmol/l Pb could decrease chlorophyll content of 
Pisum sativum (Sengar and Pandey 1996). However, present work showed that 5 and 10 mmol/l 
Pb(NO3)2 treatments could increase the chlorophyll a/b content of Cornus controversa seedlings. 
Similar work also showed that low concentration of Pb exposure elevated the chlorophyll content 
of Hydrilla verticillata and Jatropha curcas L. (Shu et al. 2012, Singh et al. 2013). These findings 
suggested that low level of Pb might have a simulating effect on chlorophyll contents of plants. 
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 In addition, MDA is a reliable marker that determines oxidative stress under heavy metal 
pollutions in plants. Therefore, the MDA content was measured in Cornus controversa after 
exposed to either Cd or Pb treatments. A significant increment of MDA content was detected after 
either Cd or Pb treatment (Fig. 1), suggesting that both Cd and Pb may promote seriously 
oxidative damage in the plant cells of Cornus controversa. The result agrees with many previous 
studies (Posmyk et al. 2005, Foyer and Noctor 2005). To protect from oxidative damage, 
antioxidant enzymes, such as SOD and GPX are activated to scavenge the radicals. SOD is an 
essential enzyme, which catalyzes the conversion of superoxide anion to O2 and H2O2, and its 
activity is often explained as a way of O2 radical-eliminating ability (Wang et al. 2005). In present 
study, the SOD activity in Cornus controversa leaves was increased significantly under either Cd 
or Pb treatment (Table 3). Enhanced SOD activities in Cornus controversa seedlings under Cd and 
Pb exposure suggested that the plants may start the natural anti-oxidative system to scavenge free 
O2 radicals. In contrast, a number of studies also revealed the heavy metal toxicities may interfere 
with the antioxidant defense systems by affecting the enzyme activities (Cheng 2003, Nagajyoti et 
al. 2010). GPX is reported to catalyze the reduction of H2O2, organic hydroperoxides, and lipid 
hydroperoxides to H2O and alcohol using GSH and/or other reducing equivalents (Foyer and 
Noctor 2011). In present work, Cd exposure decreased the GPX activities of Cornus controversa 
seedlings (Table 3), which probably caused by either the directly inactivation or indirect 
repression of the production of GPX proteins by Cd. The inhibition of GPX upon Cd may impair 
the ability of Cornus controversa seedlings in response to oxidative stresses. Additionally, 
previous studies demonstrated proline is a potent scavenger of ROS in response to oxidative stress 
(Chen and Dickman 2005). In present work, the proline content was increased 60.5 and 128.2% 
under 5 and 10 mmol/l Pb treatments respectively, while 77.9 and 221% under 10 and 20 mmol/l 
Cd treatments respectively (Fig. 2). The results were consistent with the report of Schat et al. 
(1997) on the Silene vulgaris. Hence, the increased accumulation of proline under the Cd and Pb 
treatments, this will help the Cornus controversa seedlings to maintain an osmotic balance within 
plant cells. 
 
Table 3.  Effects of lead and cadmium on antioxidative enzyme activities. 
 
Treatment GPX (mmol  guaiacol/min/g/ FW) SOD (Unit/g FW) 
 

CK 1.783 ± 0.284ab 245.98 ± 41.04a 
Pb2+A 2.801 ± 0.883c 471.58 ± 104.70b 
Pb2+B 1.908 ± 0.226b 437.02 ± 96.87b 
Cd2+A 0.912 ± 0.059a 493.41 ± 65.79b 
Cd2+B 1.191 ± 0.597ab 431.26 ± 51.06b 
p 0.004** 0.018* 
 
 It is suggested that 2-year-old Cornus controversa seedlings may be more tolerant to Pb than 
Cd. These findings will contribute to the evaluation of planting Cornus controversa in heavy metal 
polluted areas. 
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Fig.1 Effects of Pb and Cd on MDA content. CK, control treatment; Pb2+A, treatment with 5 mmol/l 

Pb(NO3)2 solution; Pb2+B, treatment with 10 mmol/l Pb(NO3)2 solution; Cd2+A, treatment with 10 
mmol/l CdCl2 solution; Cd2+B, treatment with 10 mmol/l CdCl2 solution. Values followed by the same 
letter indicate nonsignificant differences at p < 0.05 (DMRT). Each value represents the mean ± SE of 
five replicates.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Effects of Pb and Cd on  proline content. CK, control treatment; Pb2+A, treatment with 5 mmol/l 

Pb(NO3)2 solution; Pb2+B, treatment with 10 mmol/l Pb(NO3)2 solution; Cd2+A, treatment with 10 
mmol/l CdCl2 solution; Cd2+B, treatment with 10 mmol/l CdCl2 solution. Values followed by the same 
letter indicate nonsignificant differences at p < 0.05 (DMRT). Each value represents the mean ± SE of 
five replicates.  
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